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ABSTRACT 
We study the effect of surface roughness on Kelvin-Helmholtz instability (KHI) in a fluid layer above by a porous 

layer and below by a rigid surface in presence of transverse magnetic field. A simple theory based on fully 

developed flow approximations is used to derive the dispersion relation with surface roughness for the growth rate 

of KHI. We replace the effect of boundary layer with Beavers and Joseph slip condition as well as roughness 

condition at the rigid surface. The dispersion relation is derived using suitable boundary and surface conditions and 

results are discussed graphically. The magnetic field is found to be stabilizing and the influence of the various 

parameters involved in the problem on the interface stability is thoroughly analyzed.  
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INTRODUCTION 
Kelvin-Helmholtz instability is one of the basic 

instabilities of two-fluid systems, which affects an 

interface. In Engineering, Kelvin -Helmholtz 

instability plays an essential role in transition from 

stratified to slug flow in horizontal pipes explored by 

Simmons [2]. Lord Kelvin first examined Kelvin-

Helmholtz instability in 1910. An inviscid linear 

analysis of the phenomenon, which is applicable in 

case of two liquids with similar densities, can be 

found in various textbooks, for example in 

Chandrasekhar [3], and Drazin & Reid [4]. The 

problem becomes much more complicated for large 

density differences, which appears in case of liquid 

and gas. For example the instability of sea surface 

appears at wind speeds significantly lower than the 

critical wind speed given by linear inviscid analysis 

Gondret & Rabaud [5]. This phenomenon called 

“subcritical” Kelvin-Helmholtz instability (with high 

density difference) was analyzed by Meignin [6] and 

was found to be result of nonlinear analysis.  

Kelvin-Helmholtz instability appears in stratified 

two-fluid flows, in the presence of a small 

disturbance and relative velocity that is larger than 

critical. The disturbance causes change of the 

velocity field. Because of the continuity equation, the 

velocity of one fluid increases and of the other one 

decreases. The change in velocity field changes 

pressure (Bernoulli’s equation). Pressure force is 

increasing the disturbance; surface tension force and 

gravity force are decreasing the disturbance. If the 

pressure force is larger than the sum of surface 

tension and gravity forces, the Kelvin-Helmholtz 

instability occurs. A linear theory of the KHI for 

parallel flow in porous media was introduced by 

Bau[7] for the Darcian and non-Darcian flows. In 

both cases, Bau found that the velocities should 

exceed some critical value for the instability to 

manifest itself. The instability of plane interface 

between two uniform   superposed fluids through a 

porous medium was investigated by Kumar [8]. They 

used linear stability analysis to obtain a characteristic 

equation for the growth of the disturbance.   

 

The nonlinear Kelvin -Helmholtz instability of a 

horizontal interface between a magnetic inviscid 

incompressible liquid and an inviscid laminar 

subsonic magnetic gas is investigated in the presence 

of a normal magnetic field by Zakaria[9]. El-Sayed 

[10] investigated the RTI problem of rotating 

stratified conducting fluid layer through porous 

medium in the presence of an inhomogenous 

magnetic field. This problem corresponds physically 

(in astrophysics) to the RTI of an equatorial section 

of a planetary magnetosphere or of stellar atmosphere 

when rotation and magnetic field are perpendicular to 
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gravity. The KHI of two superposed viscous fluids in 

a uniform vertical magnetic field is discussed in the 

presence of effects of surface tension and 

permeability of porous medium by Bhatia and 

Sharma [11]. Following Babchin et al.,[12] and 

Rudraiah et al.,[13], a simple theory based on Stokes 

and lubrication approximations is used in this study 

by replacing the effect of the boundary layer with a 

Beavers and Joseph[14] slip condition, with the 

primary objective of using porous layer to suppress 

the growth rate of KHI. In the above studies the fluid 

has been considered to be Newtonian. El-Dib and 

Matoog[15] have studied the Electrorheological 

Kelvin–Helmholtz instability of a fluid sheet. This 

work deals with the gravitational stability of an 

electrified Maxwellian fluid sheet shearing under the 

influence of a vertical periodic electric field. The 

field produces surface charges on the interfaces of the 

fluid sheet. Due to the rather complicated nature of 

the problem a mathematical simplification is 

considered where the weak effects of viscoelastic 

fluids are taken into account.  Asthana and Agrawal 

[16] have applied the viscous potential theory to 

analyze Kelvin–Helmholtz instability with heat and 

mass transfer and observed that heat and mass 

transfer has destabilizing effect on relative velocity 

when lower fluid viscosity is low while it has 

stabilizing effect when lower fluid viscosity is high. 

Khalil Elcoot[17] has studied the new analytical 

approximation forms for non-linear instability of 

electric porous media. In this work, we have 

examined the effects of stability of the normal 

electric field on the porous media, in view of the non- 

linear theory. The main purpose is to discuss 

modulation instability of a finite wavetrain solution 

by using the method of multiple scales perturbation, 

and comparing the results with the linear instability 

theory. Chavaraddi et al., [18] have studied the 

electrohydrodynamic Kelvin-Helmholtz instability in 

a fluid layer bounded above by a porous layer and 

below by a rigid surface. Recently, Chavaaraddi et al 

[19] have studied the Kelvin-Helmholtz discontinuity 

between two viscous conducting fluids in a transverse 

magnetic field through a porous medium in the 

presence of the effects of surface tension using B-J 

condition[14] at the interface. The objective of this 

paper is to predict the effect of surface roughness at 

the boundary formulated by Miksis and Devis[20] on 

Kelvin-Helmholtz instability.  

 

The paper is organized as follows. The basic 

equations are established in section 2 together with 

Maxwell’s equations. The basic equations are 

simplified and non-dimensionalized using the 

following Stokes and lubrication approximations in 

this section. The resulting dispersion relation is 

derived using suitable boundary and surface 

conditions in section 3. The cutoff and maximum 

wave numbers and the corresponding maximum 

growth rate are also obtained in section 3. The results 

are discussed and some important conclusions are 

drawn in final section of this paper. 

 

MATHEMATICAL FORMULATION 
The physical configuration is shown in Figure 1. We 

consider a thin target shell in the form of a thin film 

of unperturbed thickness h (Region 1) filled with an 

incompressible, viscous, poorly electrically 

conducting light fluid of density 
f

  bounded below 

by a rigid surface at y=0 and above by an 

incompressible, viscous poorly conducting heavy 

fluid of density 
p  saturating a dense porous layer 

of large extent compared to the shell thickness h. The 

co-ordinates x and y spans the horizontal and vertical 

directions. The interfacial y=h is denoted by ),( tx . 

When the interface is flat then 0   when y=h. The 

fluid velocity vector ( , )q u v  and the fluid is 

assumed to be Newtonian, viscous electrically 

conducting and incompressible.  The viscosity of 

fluid (porous medium) is given by ( ),f p    the 

porous parameter,  the permeability of the porous 

medium and   is the slip parameter at the interface. 

The stress gradient   is related to the gravitational 

acceleration through the relation ( )p fg    . 

The perturbed interface ),( tx  is along the y 

direction.    

 

The basic equations for clear fluid layer (region 1) 

and those for porous layer (region 2) are as given 

below: 
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Region-1: 

 

q 0              (2.1) 

 

  
2

f f 0

q
(q. )q p q (J H)

t
  

 
         

       (2.2) 

Maxwell’s Equations:  

,. 0, 0,
B D

E H E H J
t t

 
         

 
         (2.3) 

and the auxiliary equations  

0 0, , [ ]D E B H J B E q B B                            (2.4) 

Region-2:  

 

   
k p

Q
x


 


             (2.5) 

where ( , )q u v the fluid velocity, E  the electric field, H  the magnetic field, J  the current density, D  the 

dielectric field, B  the magnetic induction,   the electrical conductivity, k the permeability of the porous medium, 

p the pressure, 0  magnetic permeability, Q (Q,0,0)  the uniform Darcy velocity,   the fluid viscosity and 

  the fluid density.  

 

The basic equations are simplified using the following Stokes and lubrication and electrohydrodynamic 

approximations (See Rudraiah et al[13]):  

(i) The electrical conductivity of the liquid, , is negligibly small, i.e., <<1.  

(ii) The film thickness h is much smaller than the thickness H of the dense fluid above the film. That is 

h < < H 

(iii) The surface elevation  is assumed to be small compared to film thickness h. That is  

 < < h 

 

(iv) The Strauhal number S, a measure of the local acceleration to inertial           acceleration in Eq. (2.2), is 

negligibly small.   

 That is      

1
UT

L
S    

where /U L  is the characteristic velocity,   the kinematic viscosity, /L    the characteristic length 

and  
3 2/T h   the characteristic time. 

 

 Under these approximations Eqs.( 2.1) and (2.2) for fluid in the film, after making dimensionless using  

,
2 2 2

, , , , ,
/ / / /f f f f

u v p Q t x y
u v p Q t x y

h h h h h h h        

                 

      (2.6) 

become (after neglecting the asterisks for simplicity) 
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Region 1: 

   0
u v

x y

 
 
 

            (2.7) 

2
2

2
0

p u
M u

x y

 
   

 
                  (2.8) 

y

p




0                                 (2.9) 

where  
0 0 /f fM H h     is  the Hartmann number which is the ratio of Darcy resistance to the viscous 

force. 

 

Region 2: 

   
2

1

p

p
Q

x


 


                        (2.10) 

where   

/p h k   is the porous parameter.  

 

DISPERSION RELATION 
To find the dispersion relation, first we have to find the velocity distribution from Eq. (2.8) using the following 

boundary and surface conditions:  

                   0at 



 yu

y

u
                            (3.1)  

         ( )
p p B

u
u Q

y
  





 at   y = 1                            (3.2) 

where  

 1Bu u at y    

v
t





   at   y =1               (3.3)                         

2

2

1
p

B x





  


  at   y =1.                   (3.4) 

Here 
2 /B h   is the Bond number,   is the roughness parameter and ( , , )x y t  is the elevation of the   

interface. 

The solution of (2.8) subject to the above conditions is  











221

1

M
SinhMyaCoshMyaPu             (3.5) 

where 

CoshMM

CoshMMa
a

2

2

2
1

1 
  
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][][
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M

M

a
pp

p
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


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

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



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
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p

x



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.  

After integrating Eq.( 2.7) with respect to y between y = 0 and 1 and using Eq.(3.5), we get    

    

2 4

22 4

1
(1)v

x B x

   
   

  
                 (3.6) 

where  

2

21
2

1)1(

M

CoshMMaMSinhMa 
 . 

Then Eq.(3.3), using Eqs.(3.6) and (3.4), becomes    

2 4

22 4

1

t x B x

     
   

   
 .                        (3.7) 

To investigate the growth rate, n, of the periodic perturbation of the interface, we look for the solution of Eq.(3.7) in 

the form 

           ( )exp{ }y i x nt                            (3.8) 

where is the wave number and ( )y is the amplitude of perturbation of the interface.  

Substituting Eq.(3.8) into (3.7), we obtain the dispersion relation in the form    

 

2
2

21n
B

 
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 
.                    (3.9) 

Also, Eq. (3.9) can be expressed as  

   b an n v           (3.10) 

where      

2 2

1
3
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B

 
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 
,    

2

2 1
B


 

   
 

,  

2

2

2

1 3
1

3
av

B

   
   

   
. 

Setting n = 0 in Eq.(3.9), we obtain the cut-off wavenumber, ct  in the form  

     
ct

B          (3.11) 

because 2and  are non-zero. 

The maximum wavenumber, m  obtained from Eq.(3.9)) by setting 0






n
 is   

22

ct

m

B
              (3.12) 

because and  are different from zero. 

The corresponding maximum growth rate, nm, is  

24m
n

B
                        (3.13) 

http://www.ijesrt.com/


[Chavaraddi, 4(1): January, 2015]   ISSN: 2277-9655 

                                                                                                 Scientific Journal Impact Factor: 3.449 

   (ISRA), Impact Factor: 2.114 
   

 http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [530] 
 

Similarly, using / 2
m

B , we obtain  

12

B
nbm             (3.14) 

and hence  

2
3

m

m
bm

G
n

n
   .                         (3.15) 

The growth rate given by Eq.(3.9) is computed numerically for different values of physical parameters which 

involved in the problem and the results are presented graphically in Figures 2-5.

   

RESULTS AND DISCUSSION  
In this study we have shown the surface instability of 

KH type in a fluid layer bounded above by a porous 

layer and below by a rigid surface is affected by the 

effect of magnetic field and surface roughness. 

Numerical calculations were performed to determine 

the growth rate at different wavenumbers for various 

fluid properties like Hartmann number M, Bond 

number B, porous parameter p and roughness 

parameter β. We have plotted the dimensionless 

growth rate of the perturbation against the 

dimensionless wavenumber for some of the cases 

only.  

 

When we fix all the input parameters except the ratio 

of the Hartmann number M, we  

find that the higher the Hartmann ratio the more 

stable the interface is. In Figure 2, we have plotted 

the the growth rate against the wavenumber in the 

case where p = 0.1,  B = 0.02, p = 4 and 
3103.3   for different values of the Hartmann 

number M. Increasing the Hartmann ratio results is 

slightly increasing the critical wavenumber and 

decreasing the maximum growth rate. Thus it has a 

stabilizing effect for the selected values of input 

parameters due to the increased in Hartmann ratio 

(Lorentz force to viscous force).  

 

In addition, we have investigated the effect of the 

surface tension of the fluid on the instability of the 

interface.  In our sample calculations, we have taken 

p = 0.1, M =2, p = 4 and 
3103.3   with the 

variation of Bond number B. For this input 

parameters, the critical wavenumber and maximum 

growth rate decreased as the ratio of the Bond 

number B decreased from 0.4 to 0.1 as observed in 

Figure 3. This is because the Bond number is 

reciprocal of surface tension and thus showing that an 

increase in surface tension decreases the growth rate 

and hence make the interface more stable.  

 

 

However, in order to understand the effect of the 

porous properties on the instability, we now fix 

values of other parameters p = 0.1, B = 0.02, M = 2 

and 
3103.3   and vary the ratios of the porous 

parameters.  Figure 4 displays the results of our 

calculations, showing that increasing the ratio of 

porous parameters p from 4 to 100 (and thus 

increasing the Darcy resistance compared to the 

viscous force) increases the critical wavelength and 

increases the maximum growth rate, thus having a 

destabilizing effect by this parameter. We conclude 

that an increase in p also destabilize the KHI.  

 

Finally, we have fixed the values of the other 

parameters p = 0.1, B = 0.02, M = 2   and p = 4 

with variation of the roughness parameter β as shown 

in Fig.5. It is clear that an increase in surface 

roughness parameter is to decrease in the growth rate 

of the interface; this is because the resistance offered 

by the surface roughness should be overcome, in that 

process a part of kinetic energy is converted into 

potential energy. Hence the effect of surface 

roughness is to reduce the growth rate of the interface 

and thus to make the system stable.  

 

CONCLUSION 
We have studied the linear stability of a two-fluid 

flow in a channel where the fluids are assumed to be 

Newtonian with different fluid properties (Hartmann 

number, Surface tension, porous parameter and 

surface roughness) and subjected to magnetic field 

normal to their interface with surface roughness. For 

this purpose, we have derived and then linearized the 

equations of motion where the interaction between 

the hydrodynamic and electric problems occurs 

through the stress balance at the fluid interface. The 

growth rate of the perturbation was then computed by 

using the normal mode method and its variation 

studied as a function of the dimensionless parameter 
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Hartmann M, Bond number B and porous parameter 

p  in addition to roughness parameter β. While two 

layer flows in channels of small dimensions are 

rather stable, the instability of the fluid–porous 

interface is highly desirable in certain cases, 

particularly for chemical industry, in petroleum 

production engineering applications where the 

mixing of reagents are crucial steps in the process. 

However, in systems of larger scale, the instability of 

the fluid–porous interface in a channel is often an 

undesired physical phenomenon. In such situations, 

controlling the flow requires the stabilization of the 

interface. In searching for a method capable of either 

stabilizing a potentially unstable interface or 

destabilizing a potentially stable one, we have 

investigated the role of the magnetic field on the two-

layer channel flow problem in presence of surface 

roughness; demonstrated that either destabilization or 

stabilization can be obtained and presented growth 

rates in situations where the magnetic field is 

stabilizing or destabilizing over a broad range of 

wavenumbers for increasing in Hartmann number M. 

But in the case of variation in Bond number is to 

increase in surface tension decreases the growth rate 

and hence make the interface more stable. Also we 

conclude that the increase in the porous parameter is 

to increase the growth rate showing thereby the 

destabilizing effect on the interface.  
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Figure 1: Physical Configuration 
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Figure 2: Growth rate, n versus the wavenumber,   for different values of 

Hartmann number, M   when p = 0.1, B = 0.02, β=3.3x10-3 and p = 4. 
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Figure 3: Growth rate, n versus the wavenumber,   for different values of 

Bond number, B   when p = 0.1, M =2,p = 4 and β=3.3x10-3. 
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Figure 4: Growth rate, n versus the wavenumber,   for different values of 

Porous parameter, p   when p = 0.1, B = 0.02, β=3.3x10-3 and M = 2. 
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Figure 5: Growth rate, n versus the wavenumber,   for different values of 

Roughness parameter, when p = 0.1, B = 0.02, p  =4.  β=3.3x10-3 and M = 2. 
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